用户
 找回密码
 立即注册
查看: 190|回复: 0
打印 上一主题 下一主题

2018中科院力学研究所材料学考研考试科目,参考书目,考试大纲

[复制链接]

76

主题

95

帖子

425

积分

中级会员

Rank: 3Rank: 3

积分
425
跳转到指定楼层
楼主
发表于 2017-11-4 10:17:11 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
欢迎关注中科院考研

考研咨询及报辅导班请联系吴老师
电话:13366797044
微信:13366797044
QQ:1798170045
                                                    
考试科目
①101思想政治理论
②201英语一
③302数学二
④806普通物理(乙)或807材料力学或825物理化学(乙)

参考书目
806
全国重点大学工科类普通物理教材
807
1.孙训方,方孝淑,关来泰编,《材料力学》,高等教育出版社,2012 年。
2.刘鸿文主编,《材料力学》,高等教育出版社,2011 年。
3.范钦珊主编,《材料力学》,清华大学出版社,2008 年。
825
《物理化学》上,下册(第四版),天津大学物理化学教研室所编,高等教育出版社,2001年


考研大纲
806大纲
一、考试科目基本要求及适用范围概述

本《普通物理(乙)》考试大纲适用于中国科学院大学工科类的硕士研究生入学考试。普通物理是大部分专业设定的一门重要基础理论课,要求考生对其中的基本概念有深入的理解,系统掌握物理学的基本定理和分析方法,具有综合运用所学知识分析问题和解决问题的能力。

二、考试形式

考试采用闭卷笔试形式,考试时间为 180 分钟,试卷满分 150 分。试卷结构:单项选择题、简答题、计算题,其分值约为 1:1:3

三、考试内容:

大学工科类专业的《大学物理》或《普通物理》课程的基本内容,包含力学、电学、光学、原子物理、热学等。

四、考试要求:

(一) 力学 1. 质点运动学:

熟练掌握和灵活运用:矢径;参考系;运动方程;瞬时速度;瞬时加速度;切向加速度;法向加速度;圆周运动;运动的相对性。

2.质点动力学:

熟练掌握和灵活运用:惯性参照系;牛顿运动定律;功;功率;质点的动能;弹性势能;重力势能;保守力;功能原理;机械能守恒与转化定律;动量、冲量、动量定理;动量守恒定律。

3.刚体的转动:

熟练掌握和灵活运用:角速度矢量;质心;转动惯量;转动动能;转动定律;力矩;力矩的功;定轴转动中的转动动能定律;角动量和冲量矩;角动量定理;角动量守恒定律。

4.简谐振动和波:

熟练掌握和灵活运用:运动学特征(位移、速度、加速度,简谐振动过程中的振幅、角频率、频率、位相、初位相、相位差、同相和反相);动力学分析;振动方程;旋转矢量表示法;谐振动的能量;谐振动的合成;波的产生与传播;波的能量、能流密度;波的叠加与干涉;驻波;多普勒效应。
5.狭义相对论基础:

理解并掌握:伽利略变换;经典力学的时空观;狭义相对论的相对性原理;光速不变原理;洛仑兹变换;同时性的相对性;狭义相对论的时空观;狭义相对论的动力学基础。


(二) 电磁学
1.静电场:

熟练掌握和灵活运用:库仑定律,静电场的电场强度及电势,场强与电势的叠加原理。理解并掌握:高斯定理,环路定理,静电场中导体及电介质问题,电容、静电场能量。

2.稳恒电流的磁场:

熟练掌握和灵活运用:磁感应强度矢量,磁场的叠加原理,毕奥—萨伐尔定律及应用,磁场的高斯定理、安培环路定理及应用。理解并掌握:磁场对载流导体的作用,安培定律,运动电荷的磁场、洛仑兹力。了解:磁介质, 介质的磁化问题,基本实验。

3.电磁感应:

熟练掌握和灵活运用:法拉第电磁感应定律,楞次定律,动生电动势。 理解并掌握:自感、互感、自感磁能,互感磁能,磁场能量。

4.直流与交流电路:

熟练掌握和灵活运用:基本概念和定义。理解并掌握:复杂交直流电路的解法。

5.电磁场理论与电磁波:

熟练掌握和灵活运用:位移电流,麦克斯韦方程组。理解并掌握:电磁波的产生与传播,电磁波的基本性质,电磁波的能流密度。

6. 电磁学单位制:

理解:电磁学国际单位制。


(三)光学1.光波场的描述:

能写出各种光波的波函数;能正确表述光波的各种偏振状态。 2. 光的干涉:

正确理解波的叠加原理和相干光的含义;理解各种典型干涉装置(杨氏实验、尖劈、牛顿环、迈克尔孙干涉仪、法布里-珀罗干涉仪、干涉滤光片)的工作原理;能解释各种典型干涉装置产生的干涉图样的特点;了解上述装置干涉场中的光强分布。

3.光的衍射:

正确理解产生光的衍射现象的机理;掌握处理衍射问题的基本原理;能灵活运用半波带法解释几种典型装置(夫琅禾费单缝、圆孔衍射,夫琅禾费多缝衍射,菲涅耳圆孔和圆屏衍射)的衍射现象;了解上述装置衍射场中的光强分布问题。

4.光的偏振:

掌握线偏振光的获得与检验;理解各种偏振光器件(偏振片、波片)的工作原理;能熟练运用各种偏振光器件产生和检验偏振光;能熟练运用马吕公式求解问题;了解反射和折射光的偏振;了解光在各向异性介质中的传播:能正确描述和解释双折射现象。

(四) 原子物理 1. 原子的量子态与精细结构:

理解并掌握:α粒子散射实验和卢瑟福原子模型。熟练掌握和灵活运用: 氢原子和类氢离子的光谱,玻尔的氢原子理论,夫兰克-赫兹实验与原子能级,原子中电子轨道运动的磁矩,史特恩-盖拉赫实验,电子自旋的假设,碱金属原子的光谱,原子实的极化和轨道贯穿,碱金属原子光谱的精细结构,电子自旋同轨道运动的相互作用,单电子辐射跃迁的选择定则,氢原子光谱的精细结构。
2. 多电子原子:

熟练掌握和灵活运用: 氦的光谱和能级,具有两个价电子的原子态,泡利原理与同科电子,辐射跃迁的普用选择定则;元素性质的周期性变化,原子的电子壳层结构,原子基态的电子组态。

3. 在磁场中原子:

熟练掌握和灵活运用: 原子的磁矩,外磁场对原子的作用,塞曼效应。

(五)热学1.气体分子运动论:

理解并掌握:理想气体状态方程,理想气体的压强公式,麦克斯韦速率分布律,玻耳兹曼分布律,能量按自由度均分定理,气体的输运过程。

2.热力学:

理解:热力学第一定律,热力学第一定律的应用,循环过程、卡诺循环,热力学第二定律;了解:低温物理现象。

807大纲
本材料力学考试大纲适用于中国科学院大学力学类的硕士研究生入学考试。材料力学是力学类各专业的一门重要基础理论课,本科目的考试内容包括材料力学的基本概念,轴向拉伸与压缩,剪切与扭转,弯曲内力,弯曲应力,弯曲变形,截面几何性质,应力和应变分析与强度理论,组合变形,能量方法,压杆稳定等部分。要求考生能熟练掌握材料力学的基本理论,具有分析和处理一些基本问题的能力。

一、考试内容:

(一) 材料力学概述:(熟练掌握)

变形体,各向同性与各向异性弹性体,弹性体受力与变形特征;基本假设;工程结构与构件,杆件受力与变形的几种主要形式;用截面法求指定截面内力。

(二) 轴向拉伸与压缩:(熟练掌握)

轴向拉压杆的内力、轴力图,横截面和斜截面上的应力,轴向拉压的应力、变形,轴向拉压的强度计算,轴向拉压的超静定问题,装配应力和热应力问题;轴向拉压时材料的力学性质。

(三) 剪切与扭转:(熟练掌握)

剪力和弯矩的计算与剪力图和弯矩图;载荷集度、剪力和弯矩间的微分关系及应用;连接件剪切面的判定,切应力的计算;切应力互等定理和剪切虎克定律;外力偶矩的计算、扭矩和扭矩图;圆轴扭转时任意截面的扭矩,扭转切应力,圆轴扭转时任意两截面的相对扭转角,开口与闭口薄壁杆件扭转切应力及切应力分布,剪力流的概念;矩形截面杆件最大扭转切应力及切应力分布;圆及环形截面的极惯性矩及抗扭截面模量的计算。
(四) 弯曲内力:(灵活运用)

剪力和弯矩的计算,剪力图和弯矩图,载荷集度、剪力和弯矩间的微分关系及应用。(五) 弯曲应力:(灵活运用)

弯曲正应力及正应力强度的计算,直梁横截面上的正应力、切应力,开口薄壁杆件弯曲,弯曲中心的位置,截面上切应力分布,弯曲剪应力及剪应力强度计算,组合梁的弯曲强度,提高弯曲强度的措施。

(六) 弯曲变形(灵活运用)

挠曲线微分方程,用积分法求弯曲变形,用叠加法求弯曲变形,解简单静不定梁,梁的刚度条件。

(七)截面几何性质(灵活运用)

静矩、形心、惯性矩、惯性半径、惯性积,简单截面惯性矩和惯性积计算;转轴和平行移轴公式;转轴公式、形心主轴和形心主惯性矩;组合截面的惯性矩和惯性积计算。

(八)应力和应变分析与强度理论(熟练掌握)

应力状态,主应力和主平面的概念,二向应力状态的解析法和图解法;计算斜截面上的应力、主应力和主平面的方位;三向应力状态的应力圆画法;掌握单元体最大剪应力计算方法;各向同性材料在一般应力状态下的应力——应变关系,广义胡克定律,各向同性材料各弹性常数之间的关系;一般应力状态下的应变能密度,体积改变能密度与畸变能密度;四种常用的强度理论,莫尔强度理论。(九)组合变形(灵活运用)

组合变形和叠加原理;拉压与弯曲组合变形杆的应力和强度计算;斜弯曲;偏心压缩;扭转与弯曲组合变形下,圆轴的应力和强度计算;组合变形的普遍情况。

(十)能量方法(灵活运用)

掌握变形能(外力功)的普遍表达式,杆件变形能的计算;势能及其驻值原理; 虚功原理、卡氏定理、莫尔定理、图形互乘法及其应用;用能量方法解超静定问题;功的互等定理和位移互等定理。

(十一)压杆稳定(灵活运用)

压杆稳定的概念;常见约束下细长压杆的临界压力、欧拉公式;压杆临界应力以及临界应力总图;压杆失效与稳定性设计准则;压杆失效的不同类型,压杆稳定计算;中柔度杆临界应力的经验公式;提高压杆稳定的措施。

(十二)动载荷(熟练掌握)惯性力的概念;冲击的概念。

(十三)疲劳(掌握)

交变应力和疲劳极限的概念。

二、考试要求:

(一) 材料力学概述:

1.  深入理解并掌握变形体,各向同性与各向异性弹性体等概念;

2.深入理解并掌握弹性体受力与变形特征;

3.熟练掌握用截面法求截面内力;

4.了解杆件受力与变形的几种主要形式。(二) 轴向拉伸与压缩:

1.深入理解并掌握轴向拉压杆的内力、轴力图,横截面和斜截面上的应力;

2.熟练掌握轴向拉压的应力、变形;

3.理解并掌握轴向拉压的强度计算;

4.掌握轴向拉压的超静定问题;

5.了解轴向拉压时材料的力学性质。

(三)        剪切与扭转:

1.熟练掌握剪力和弯矩的计算与剪力图和弯矩图。

2.深入理解并能灵活运用载荷集度、剪力和弯矩间的微分关系及应用;

3.熟练掌握连接件剪切面的判定,切应力的计算;

4.深刻理解切应力互等定理和剪切虎克定律;

5.理解并掌握外力偶矩的计算、扭矩和扭矩图;

6.理解并掌握圆轴扭转时任意截面的扭矩,扭转切应力,绘出扭转切应力的方向;

7.熟练掌握圆轴扭转时任意两截面的相对扭转角,求圆轴单位长度上最大扭转角;

8.了解开口与闭口薄壁杆件扭转切应力及切应力分布;

9.理解并掌握矩形截面杆件最大扭转切应力及切应力分布;

10.熟练掌握圆截面的极惯性矩及抗扭截面模量的计算。

(四) 弯曲内力: 1.理解、掌握并能灵活运用剪力和弯矩的计算及剪力图和弯矩图;
2.熟练掌握并能灵活运用载荷集度、剪力和弯矩间的微分关系及应用。(五)弯曲应力

1.理解、掌握并能灵活运用弯曲正应力及正应力强度的计算,直梁横截面上的正应力、切应力;

2.理解并掌握开口薄壁杆件弯曲,弯曲中心的位置,截面上切应力分布;

3.理解、掌握并能灵活运用熟练掌握弯曲剪应力及剪应力强度计算;

4.熟练掌握组合梁的弯曲强度;

5.了解提高弯曲强度的措施。

(六)弯曲变形1.熟练掌握并能灵活运用挠曲线微分方程;2.熟练掌握并能灵活运用用积分法求弯曲变形;3.熟练掌握用叠加法求弯曲变形;4.理解并掌握解简单静不定梁;5.理解并掌握梁的刚度条件。

(七)截面几何性质

1.理解、掌握并能灵活运用静矩、形心、惯性矩、惯性半径、惯性积,简单截面惯性矩和惯性积计算;

2.理解、掌握并能灵活运用转轴和平行移轴公式;

3.理解、掌握并能灵活运用转轴公式、形心主轴和形心主惯性矩;

4.理解、掌握并能灵活运用组合截面的惯性矩和惯性积计算。(八)应力和应变分析与强度理论

1.深入理解应力状态,主应力和主平面的概念

2.熟练掌握二向应力状态的解析法和图解法计算斜截面上的应力、主应力和主平面的方位;

3.熟练掌握三向应力状态的应力圆画法,掌握单元体最大剪应力计算方法;

4.理解并掌握各向同性材料在一般应力状态下的应力一应变关系,广义胡克定律,各向同性材料各弹性常数之间的关系,一般应力状态下的应变能密度,体积改变能密度与畸变能密度;

5.理解并掌握四种常用的强度理论。

(九)组合变形1.理解并掌握组合变形和叠加原理;

2.熟练掌握拉压与弯曲组合变形杆的应力和强度计算;

3.熟练掌握斜弯曲问题的概念和求解;

4.熟练掌握偏心压缩问题的概念和求解;

5.熟练掌握扭转与弯曲组合变形下,圆轴的应力和强度计算;

6.理解并掌握组合变形的普遍情况。(十)能量方法

1.熟练掌握并能灵活运用杆件变形能的计算;

2.理解、掌握并能灵活运用卡氏定理、莫尔定理、图形互乘法及其应用;

3.掌握用能量方法解超静定问题;

4.理解并掌握功的互等定理和位移互等定理。

(十一)压杆稳定1.理解并掌握压杆稳定的概念;
2.理解并掌握常见约束下细长压杆的临界压力、欧拉公式;

3.理解并掌握压杆临界应力以及临界应力总图;

4.熟练掌握压杆失效与稳定性设计准则:压杆失效的不同类型,压杆稳定计算;

5.掌握中柔度杆临界应力的经验公式;

6.了解提高压杆稳定的措施。

建议增加一条:理解、掌握并能灵活运用压杆稳定问题挠曲线和临界应力推导方法(十二)动载荷

1. 理解并掌握惯性力和动荷系数的概念及计算方法;

2.理解并掌握冲击的概念及计算方法。(十三)疲劳

1.理解并掌握交变应力的概念;

2.理解并掌握疲劳极限的概念。

专业课一对一
暑期集训营

新祥旭考研
新祥旭(庠序,古代的学校)考研辅导机构是北京地区开办最早最权威的考研专业课辅导机构。自2005年成立以来,已经对上千考研学子进行过考研专业课辅导,其中数百人进入北京大学等著名高校。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Theme by time